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Nonlinear resonances in a laminar wall jet:
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Nonlinear mechanisms leading to the ejection of dipolar vortices from a laminar wall
jet are being investigated using highly accurate Navier–Stokes simulations. With a
set of well-defined numerical experiments for a forced Glauert wall jet, the nonlinear
resonant interaction between the large-amplitude harmonic disturbance and a small-
amplitude wave packet is systematically explored using two-dimensional simulations.
Generated by a small-amplitude pulse, the wave packet experiences rapid resonant
growth in the subharmonic part of its spectrum resulting in vortex mergings and,
ultimately, the ejection of a pair of counter-rotating vortices from the wall jet.
This two-dimensional subharmonic instability, if not mitigated by competing three-
dimensional instabilities, can lead to the detachment of the entire wall jet from
the surface. As shown using three-dimensional direct numerical simulations, vortex
ejection still occurs in a forced transitional wall jet if the two-dimensional wave
packet can reach a large amplitude level upstream of the region of three-dimensional
turbulent breakdown. Movies are available with the online version of the paper.

1. Introduction
The ejection of dipolar vortices from a jet moving along a solid boundary (wall jet)

is an intriguing dynamical process with profound implications for the development
of the flow. On a large scale, kilometre-sized dipolar eddies have been detected in
coastal currents (Ahlnäs, Royer & George 1987) transporting sediment-rich/warm
water away from the coast. On a small scale, the formation of counter-rotating vortex
pairs has been observed in laboratory experiments (Bajura & Catalano 1975) as
part of the transition process in low-Reynolds-number laminar wall jets. In these
experiments, a low-speed jet (Rej = 200–600) was injected tangentially through a
two-dimensional nozzle along the bottom wall of a water channel. Within ten nozzle-
heights downstream of the nozzle, the flow developed into a self-similar laminar
wall jet (Glauert 1956). The transition process was initiated by the emergence
of two-dimensional instability waves that led to a double row of counter-rotating
vortices, followed by one or several mergings of subsequent vortex pairs, lift-off of the
vortex pairs from the wall, and three-dimensional turbulent breakdown immediately
downstream of the vortex lift-off. In the unforced flow (natural transition), this
process was intermittent and vortex mergings and subsequent lift-off occurred as
random events separated by intervals of flow relaminarization. Harmonic forcing
with acoustic disturbances considerably shortened the transition length and fixed the
downstream location of vortex merging and vortex lift-off. For the unforced wall jet
in particular, lift-off of the vortex pairs led to a temporary detachment of the flow
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from the channel wall. In technical wall-jet applications, especially for film-cooling,
detachment from the surface would severely impair the operation of the jet and, at
worst, could cause catastrophic device failure.

Large-amplitude dipolar vortices develop in laminar wall jets under various
conditions. In the numerical simulations by Conlon & Lichter (1995) of transient
planar wall jets penetrating into an initially quiescent enclosure, a starting dipole
forms at the front of the jet, lifts off from the wall, and causes the jet to separate.
Ejections of dipolar vortices also occur in two-dimensional simulations of a steady
Glauert wall jet during start-up of harmonic forcing with large-amplitude blowing
and suction (Wernz & Fasel 1996a , b), or in response to forcing with a large-amplitude
pulse disturbance (Fasel & Wernz 1996). Common to all these cases is the formation
of isolated, large-amplitude vortex dipoles that lift away from the wall through mutual
induction of the two counter-rotating vortices constituting the dipoles. Different from
the transient wall jet, the dipole in the steady wall jet emerges out of a downstream
propagating two-dimensional wave packet that develops in response to the pulse
disturbance or the sudden start-up of harmonic forcing.

It is well known from many experimental and theoretical investigations (e.g. Tsuji
et al. 1977; Mele et al. 1986; Tumin & Aizatulin 1997), that the Glauert wall
jet supports the growth of two hydrodynamic instability modes: a viscous mode
(Tollmien–Schlichting type) originating from the inner region adjacent to the wall,
and an inviscid mode (Kelvin–Helmholtz type) associated with the inflection point in
the outer region. Each mode exhibits vorticity concentrations in both regions that, as
the disturbance amplitude reaches saturation level, develop into the double vortex row
observed in the experiments by Bajura & Catalano (1975), or in the two-dimensional
numerical simulations by Wernz & Fasel (1996a). In the simulations, the forced flow
converges to a time-harmonic state and, unlike in the experiments, no vortex ejections
occur after the initial start-up of forcing. The flow becomes time-harmonic even if,
in addition to large-amplitude forcing at a fundamental frequency, small-amplitude
forcing at half that frequency is applied. As shown in the simulations by Wernz & Fasel
(1996a) and later confirmed by Tumin (1998), the additional subharmonic disturbance
in this case is strongly amplified through resonant interaction with the fundamental
disturbance leading to the merging of subsequent vortex pairs farther downstream.
Vortex merging in the experiments was immediately followed by vortex ejection,
indicating that the merging may be a necessary precursor to the ejection by breaking
the balance between subsequent vortex pairs within the double row. However, vortex
merging alone is not sufficient. Our simulations have shown that the flow remains
time-harmonic despite the merging. Evidently, an additional ingredient is required for
triggering the ejection process. A strong candidate for this is the random background
disturbance (noise, free-stream turbulence) that even in ‘clean’ experiments is orders
of magnitude higher in amplitude than in our numerical simulations using high-
order Navier–Stokes codes. However, random background perturbations also trigger
competing three-dimensional instabilities leading to turbulent breakdown. This may
be the reason why in experiments and simulations of wall jets at larger Reynolds
numbers (Rej �1 000) with a higher perturbation level, vortex mergings and vortex
ejection have not been observed during transition (e.g. Levin et al. 2005).

In this paper, small-amplitude pulse disturbances are employed as a model for
small two-dimensional perturbations that may be present in the natural flow. The
impact of the wave packet generated by such a pulse disturbance on the forced wall
jet is studied with a set of well-defined numerical experiments using two-dimensional
Navier–Stokes simulations. The focus here is not on the actual ejection process
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Figure 1. Computational domain indicating the location of the virtual origin of the wall jet,
x0, the domain inflow, xin, the location of the forcing slot, xslot , the beginning of the buffer
domain, xbuffer , and the domain outflow, xout . Grid point locations i,j are marked at the
right-hand side and top of the domain. Also plotted are streamwise velocity profiles at x = 100
and x = 200 (—) and the half-width of the Glauert wall jet, y2 (– – –). The inset shows forcing
profile F (x).

per se. Rather, emphasis is on the physical mechanisms acting farther upstream to
strongly amplify non-periodic disturbances with a much smaller amplitude level than
is required for triggering the ejections with a pulse disturbance alone. In addition,
direct numerical simulations are employed to demonstrate that the wave-packet
development and ejection process can still occur in a wall jet that transitions to
turbulence.

2. Computational approach
For the present simulations, an incompressible Navier–Stokes code developed for

direct numerical simulation (DNS) of boundary-layer transition (Meitz & Fasel 2000)
has been adapted to the wall jet geometry (Wernz 2001). In this code, the Navier–
Stokes equations in vorticity-velocity formulation are solved numerically using a
fourth-order accurate Runge–Kutta method for the time integration and fourth-
order compact differences in the streamwise and wall-normal directions. In three-
dimensional simulations, a pseudo-spectral method with a Fourier decomposition in
the spanwise direction is employed. For the present simulations, all flow quantities are
non-dimensionalized with a reference velocity U ∗ = 3 m s−1 and a reference length
L∗ = 3.2 mm; assuming for the kinematic viscosity ν∗ = 1.5 × 10−5 m2 s−1 (air) the
reference Reynolds number is Re = 640. For this chosen scaling, the non-dimensional
thickness and streamwise mean velocity of the wall jet range is of the order of one
throughout the domain of interest.

Figure 1 shows the computational domain extending in the streamwise direction
from xin = 5 to xout = 255 with 2001 equidistant grid points. In the wall-normal
direction, a variable grid is employed with 180 points that are clustered towards the
wall (grid locations j are indicated in figure 1). For the three-dimensional simulations
in § 4, periodicity of the flow field is enforced in the spanwise direction with a
fundamental spanwise wavelength of Lz = 40 (effective spanwise domain width). This
direction is resolved using K = 81 full Fourier modes and 256 collocation points
for computing the convective terms. The boundary conditions in the streamwise
and wall-normal directions include Dirichlet conditions for the vorticity and velocity
components at the inflow (xin = 5), zero disturbances at the free-stream boundary
(ymax = 41.2), and a buffer domain near the outflow boundary (from xbuffer = 231.25



282 S. Wernz and H. F. Fasel

1.51.00.50

V

U

U, V 

y

1.5

1.0

0.5

0

Figure 2. Glauert similarity solution employed as the base flow for the computations.
Streamwise (U ) and wall-normal (V ) velocity profiles at xin = 5 (◦) and at xslot = 12.5 (�).

Parameter Value Formula Comment

U ∗ 3m s−1 — Reference velocity
L∗ 3.2 × 10−3 m — Reference length
ν∗ 1.5 × 10−5 m2 s−1 — kinematic viscosity (air)
Re 640 U ∗L∗(ν∗)−1 Reference Reynolds number
x0 0 — Virtual origin of wall jet
F ∗ 1.6875 × 10−5 m5 s−3

∫ ∞
0

U ∗(y∗)
∫ ∞

y∗ [U ∗(ỹ)]2dỹ dy∗ Flux of exterior mom. flux

Py2 9.30497 × 10−2 5.88498 (ν∗)3/4(F ∗L∗)−1/4 Parameter in (2.1)
PUm 3.11267 0.49803 (F ∗)1/2(ν∗L∗)−1/2(U ∗)−1 Parameter in (2.2)

Table 1. Important flow parameters for the present simulations.

to xout = 255) for relaminarizing the flow (see Meitz & Fasel 2000). At the wall, the
velocity components are set to zero, except for the wall-normal velocity component
over the forcing slot near the inflow.

In a precursor calculation, a steady two-dimensional base flow is computed which
closely matches the similarity solution by Glauert (1956) but, of course, satisfies the
discretized Navier–Stokes equations. To ensure that the base flow is independent of
the computational domain height, special care must be taken to recover the induced
flow field of the wall jet far away from the wall, where the similarity solution is invalid.
This is achieved by imposing flow profiles at the inflow that combine the similarity
solution near the wall with an asymptotically matched potential flow solution away
from the wall (Wernz 2001). The self-similar Glauert wall jet has its virtual origin at
x0 = 0 and has a strength that is characterized by the flux of the exterior momentum
flux, F ∗, which remains constant over x. The resulting velocity profiles at the inflow
and at the forcing slot are plotted in figure 2.

Table 1 gives the base-flow parameters and reference scales chosen for the present
simulations. Since no experimental measurements are available for a direct comparison
with the present simulation data, the same flow parameters and reference scales are
used as in our earlier wall-jet investigations (Wernz & Fasel 1996a , 1997, 2000;
Wernz 2001). (The Glauert wall jet employed as a base flow for the present and
earlier simulations was matched up with the nearly self-similar laminar wall jet from
nonlinear instability experiments in air by Zhou, Rothstein & Wygnanski (1992).
In the experiments, the wall jet issued from a nozzle of width b = 3.2 mm with
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an exit velocity of Uj = 2 m s−1 and approached a self-similar Glauert wall jet
with F ∗ = 1.6875 × 10−5 m5 s−3 within ≈ 8 b downstream of the nozzle exit.) All
flow variables can be easily rescaled using the following relations for the streamwise
development of the local half-width, y2, and streamwise velocity maximum, Um, of
the Glauert wall jet,

y2 = Py2(x − x0)
3/4, (2.1)

Um = PUm(x − x0)
−1/2, (2.2)

where the parameters Py2 and PUm are also given in table 1 for the particular flow
here. Therefore, for any streamwise location x, the local Reynolds number of the wall
jet computes as

Rey2 = Re Um y2 = Re Py2PUm(x − x0)
1/4 . (2.3)

2.1. Forcing method

In the Navier–Stokes simulations, harmonic and/or pulse disturbances are introduced
into the base flow by simultaneous wall-normal blowing and suction through a slot
in the wall centred at xslot = 12.5. This technique is efficient for producing vortical
disturbances while minimizing acoustic disturbances. The slot velocity is computed as

vs(x, y = 0, t) = F (x)[Ah cos(2πfht) + ApTp(t)], (2.4)

where F (x) represents the shape of the blowing and suction profile (insert in figure 1),
Ah and fh are amplitude and frequency of the time-harmonic disturbance, and Ap is
the amplitude of the pulse disturbance. The time function of the pulse is given by

Tp(t) = [H (t − tp) − H (t − tp − ∆tp)] sin6(πt/∆tp) cos(2πfpt), (2.5)

where H (t) is the Heaviside step function, tp the start of the pulse in time, ∆tp the
pulse width, and fp the carrier frequency of the pulse. Note, the phase angle of the
time-harmonic disturbance at time tp ,

θh,p = θh(tp) = 2π{fhtp}, (2.6)

can, in some cases, have a significant effect on the growth behaviour of the generated
disturbance. The disturbance frequencies, fh and fp , and the pulse width, ∆tp , are
non-dimensionalized by a reference frequency, f ∗

ref = 56 Hz, which was chosen as
the frequency of the fundamental harmonic disturbance in the present simulations
and matches the forcing frequency in one case from the experiments by Zhou et al.
(1992). Time functions for three pulse disturbances are plotted in figure 3(a) versus
time and in figure 3(b) versus frequency (Fourier transformed). This particular form
of function Tp was chosen here because: (i) the pulse duration is finite without the
need for artificial clipping (as opposed to a Gaussian); (ii) the spectral content of the
pulse can be limited to a chosen frequency band with few parameters. Function Tp is
designed such that the main frequency band of the pulse is centred around fp with
a width of ∆fb � 8/∆tp . The sharp drop in amplitude for the undesirable frequency
side bands is achieved by furnishing the sine function in (2.5) with a high exponent.

For the three-dimensional simulations in § 4, forcing with random white noise is
applied in all Fourier components, k, for tripping the flow to turbulence,

vr (x, y = 0, k, t) = F (x)ArTr (t, k) , (2.7)

where Ar is the forcing amplitude. Function Tr (t, k)ε[−1, 1] is provided by a white
noise generator called at every computational time step and for each Fourier
component.
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Figure 3. Time functions for three pulse disturbances. (a) Pulse disturbances versus time.
(b) Frequency spectra for the pulse disturbances. Pulse type 1: short duration pulse (– · –);
pulse type 2: low-frequency pulse (– – –); pulse type 3: high-frequency pulse (—). Note, a
sampling period of �t = 40 is used for computing the spectra from the time functions.

2.2. Validation

The DNS code has been validated extensively by Meitz & Fasel (2000). For the
DNS of wall jets, grid convergence studies have ensured that the influence of the
discretization error on the flow solution is kept small. In particular, since the present
two-dimensional simulations are inexpensive to run on current high-performance
computers, the grid has been oversized in terms of grid resolution and domain size.
Specifically, more than 32 points are employed per wavelength of the fundamental
disturbance and the computational domain extends far away from the wall and far
downstream (see figure 1). In addition, base flow and time-periodic flow have been
converged for dozens of flow-through times until residual non-periodic disturbances
generated during start-up have decreased in amplitude down to nine orders of
magnitude below base-flow level. This was done to ensure that these uncontrolled
disturbances do not interfere with the deliberately input pulse disturbance.

3. Two-dimensional simulation results
With a series of high-resolution two-dimensional simulations, the mechanisms

responsible for the ejection of dipolar vortices from a Glauert wall jet have been
studied. A well-defined pulse disturbance with a time behaviour that is described
by (2.5) is employed as a prototypical disturbance to model the effect of small-
amplitude two-dimensional random perturbations. The forcing parameters for the
different simulation cases are given in table 2.

3.1. Steady wall jet perturbed by small-amplitude pulse

For Case 1, using small-amplitude blowing and suction, a pulse disturbance
has been introduced into the laminar wall jet leading to the development of a
downstream-travelling wave packet. The forcing amplitude was chosen small enough
that nonlinear effects are negligible and the development of the wave packet is
described well by linear stability theory. Owing to the short pulse duration, �tp = 2,
the frequency spectrum of the pulse is very broad (see figure 3(b), pulse type 1)
and, as a result, the ensuing wave packet also contains a wide range of frequencies.
This is seen from the contour plot in figure 4 which plots the frequency spectrum
of the wave packet versus downstream distance. A sampling period of �t = 40
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Ah fh Ap fp ∆tp θh,p
Pulse
type Comment

Case 1 — — 10−4 1 2 0 1 Small-amplitude broad-spectrum
pulse

Case 2 5 × 10−3 1 — — — — — Large-amplitude harmonic forcing
Case 3 5 × 10−3 1 10−4 1 2 0 1 Harmonic forcing + broad-spectrum

pulse
Case 4 5 × 10−3 1 10−5 1 2 0 1 Harmonic forcing + smaller-

amplitude pulse
Case 5 5 × 10−3 1 10−3 1 2 0 1 Harmonic forcing + larger-amplitude

pulse
Case 6 5 × 10−3 1 10−4 0.5 8 0 2 Harmonic forcing + low-frequency

pulse
Case 7 5 × 10−3 1 10−4 1.5 8 0 3 Harmonic forcing + high-frequency

pulse
Case 8 2 × 10−2 1 10−4 1 2 0 1 Large-amplitude harmonic forcing +

broad-spectrum pulse
Case 9 2 × 10−2 1 10−4 1 2 π 1 Phase shifted harmonic forcing +

broad-spectrum pulse
Case L 5 × 10−3 1 10−6 1 2 0 1 Harmonic forcing + very small-

amplitude pulse
Case P — — 10−2 1 2 0 1 Large-amplitude broad-spectrum

pulse
Case S — — — — — — — Start-up of steady blowing

Table 2. Forcing parameters for simulation cases. For an illustration of the time-behaviour
and the frequency spectra of pulse types 1–3 see figure 3. Note, fh, fp and ∆tp are normalized
by the reference frequency, f ∗

ref = 56 Hz. Phase angle, θh,p , has been defined in (2.6).

is used for the Fourier transform. For reference, the neutral curves of the viscous
inner mode and the inviscid outer mode according to linear stability theory (LST)
are also shown. The neutral curves have been renormalized using (2.1)–(2.3) from
the local coordinates (Rey2, β) that are typically used in the literature (the local
frequency, β , relates to frequency f as β = Pβ U−1

m y2 f with Pβ = 2π f ∗
ref U ∗−1 L∗)

for plotting the linear stability diagram of the wall jet (see inset in figure 4; see
also, e.g. Tsuji et al. 1977; Tumin & Aizatulin 1997). Close to the forcing slot
(receptivity region) where the disturbance is still adjusting and where both linear
instability modes are present simultaneously, a comparison between simulation data
and LST results is difficult. Farther downstream, however, the location where the
inner mode reaches its maximum amplitude (marked in figure 4 with white dashed
line) coincides remarkably well with branch two of the neutral curve from LST
over a wide frequency range. This is an indication that the wave packet is a true
linear superposition of harmonic disturbances, a fact that is further demonstrated
in figure 5. Shown in figure 5(a) is the amplitude development of selected frequency
components within the wave packet in comparison with the corresponding harmonic
disturbances (each computed in a separate Navier–Stokes simulation) at these same
frequencies. The match between wave packet and harmonic disturbances is nearly
perfect, except for the slight discrepancy observed for the curves corresponding
to f = 1/2. A perfect match is observed in figure 5(b) between the normalized
disturbance profile from the frequency component, f = 1, within the wave packet,
the profile of a harmonic disturbance of fh = 1, and the eigenfunction from LST
for fh = 1, all three at x = 55. Notice from the semi-logarithmic plot in figure 5(a),
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Figure 4. Linear development of a small-amplitude wave packet generated by pulse
disturbance (Case 1). Contour plot of the Fourier amplitude Aω,wall in logarithmic scale
versus frequency f and streamwise distance x. The local Reynolds number Rey2 is also
marked at the top of the graph. Plotted for comparison are the neutral curves (—) according
to LST. Inset: Paths of disturbances with constant frequency f (–··–) in the linear stability
diagram with the neutral curves plotted versus local frequency, β , and Reynolds number, Rey2.

that the amplitude increase of the wave packet in the downstream direction owing
to linear amplification is less than one order of magnitude and the disturbance
amplitude remains far below the nonlinear saturation level. As a result, the wave
packet propagates throughout the integration domain while first growing, then
decaying without any lasting effect on the base flow.

3.2. Wall jet perturbed by large-amplitude time-harmonic forcing

As reported by Wernz & Fasel (1996a), time-harmonic forcing of the wall jet with a
large amplitude may lead to the ejection of dipolar vortices during start-up. Yet in our
simulations, a time-harmonic state of the forced flow could still be reached using one
of three approaches: (i) by computing over a very long transient time-period after the
initial vortex ejection, (ii) by gradually ramping up the forcing amplitude over time,
thus reducing the amplitude of the start-up wave packet, or (iii) by slowly moving
the outflow buffer in the downstream direction at a lower rate than the propagation
speed of the start-up wave packet, which is thus ‘killed off’ by the buffer.

In Case 2, the wall jet is harmonically forced with frequency, fh = 1, and with
an amplitude, Ah = 5 × 10−3, that is 50 times larger than the amplitude, Ap , of the
pulse in Case 1. Note, however, Ah is still ≈200 times smaller than the streamwise
velocity maximum of the base flow at the forcing location (figure 2). The forced wall
jet in Case 2 has been converged towards a time-periodic state until non-periodic
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disturbances with the same frequencies (symbols). (b) Amplitude profiles (streamwise velocity)
for f = 1, x = 55 where (—) is obtained from the wave packet, (�) from a harmonic
disturbance, and (�) from LST, (· · ·) represents the local mean velocity profile.

disturbances within the flow field have decayed down to more than eight orders of
magnitude below forcing level. Figure 6 illustrates the downstream development of the
large-amplitude harmonic disturbance. The disturbance amplitude represented by the
wall-vorticity fluctuations, Aω,wall , is plotted in figure 6(a) versus x (here on a linear
scale) while the amplitude profile of the streamwise disturbance velocity at x = 55
is shown in figure 6(b). For reference, the base flow and the corresponding curves
from a linear calculation (fh = 1, Ah = 10−4) are also plotted. For better comparison,
the amplitude of the linear disturbance in both figures 6(a) and 6(b) is multiplied
by a factor of 50 so that the disturbance amplitude from Case 2 is matched at the
forcing location. Clearly, the nonlinear disturbance from Case 2 reaches a significant
amplitude level when compared to the base flow. In the wall vorticity (figure 6a),
the maximum amplitude of the nonlinear disturbance is reached at x ≈ 55 matching
the wall vorticity of the base flow. For the streamwise velocity profile at x = 55
(figure 6b), the amplitude maximum in the near-wall region is at approximately 15%
of the local velocity maximum of the base flow. As illustrated by the contour plot of
instantaneous vorticity inserted in figure 6(b), the nonlinear disturbance from Case 2
forms a double-vortex row that has vorticity concentrations with counterclockwise
rotation in the outer region and clockwise rotation near the wall. Within the ‘low-noise
environment’ of our numerical simulations, the forced wall jet in Case 2 remains at
a time-harmonic state despite the large amplitude of the disturbance present in the
flow. The question that arises now is what happens when the forcing from Cases 1
and 2 is combined.

3.3. Forced wall jet perturbed by small-amplitude pulse

In Case 3, the forced wall jet from Case 2 is subjected to additional forcing at time
tp with a small-amplitude pulse that is identical to the pulse in Case 1. Figure 7
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shows the flow field represented by spanwise vorticity at four successive time instants
after the pulse has been applied. Whereas in figure 7(a), ten fundamental forcing
periods after pulse deployment, the effect of the downstream propagating wave
packet on the flow is still not visible, ten periods later in figure 7(b) the wave packet
has grown to a large amplitude while significantly altering the double vortex row
downstream of x = 70. At this time instant, two subsequent vortex pairs are in the
process of merging at x ≈ 75 near the tail end of the wave packet. Another ten
periods later (figure 7(c)), a dipolar vortex pair has just lifted away from the wall.
Forty periods after the pulsed forcing (figure 7(d)), the dipole has propelled itself
far up into the quiescent region above the wall jet through mutual induction of the
two counter-rotating vortices. As is most often the case, the circulation associated
with the vortex of counterclockwise rotation (originating from the outer region of
the wall jet) is greater than that of the vortex of clockwise rotation (from the inner
region) and, as a result, the vortex dipole moves in a curved path in the upstream
direction. At a later time, owing to the entrainment by the wall jet, the dipole will
be re-ingested by the wall layer, leading to a secondary vortex ejection (not shown)
similar to the process observed by Wernz & Fasel (1996b) during the start-up of
harmonic forcing.

3.4. Ejection scenarios

The ejection process from Case 3 can be captured in its entirety within a single
plot by using iso-surfaces of vorticity as a function of streamwise and wall-normal
location, and time (figure 8(a)). In particular, the curved trajectory of the vortex
dipole lifting off from the wall and the sequence of vortex mergings in the outer
shear layer before and during the lift-off can be readily observed. Figure 8 also
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Figure 7. Ejection of vortex dipole from a forced wall jet in response to pulse disturbance
(Case 3). Shown are grey-scales of vorticity at four time instants: (a) tp + 10, (b) tp + 20,
(c) tp + 30, and (d) tp + 40. The ejection process is also visualized in movie 1 available with
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provides a compilation of different flow scenarios where vortex ejections are triggered
by various types of perturbations. Many features of this prototypical Case 3 are
also shared by the other three scenarios shown in figure 8. Figure 8(b) illustrates
the start-up of harmonic forcing which, after a long time-duration, will lead to the
time-periodic flow of Case 2. The ejection occurring during the start-up is also
preceded by vortex mergings and the ejected vortex dipole moves upstream in a
curved path. For Case P in figure 8(c), the flow is forced with a short-duration
pulse that is identical in shape to the pulse from Case 1, but has an amplitude
a 100 times larger. In this case, no vortex mergings are observed ahead of the
ejection process. The compact wave packet generated by the large-amplitude pulse
already contains a vortex pair that is energetic enough to lift off from the wall and
lacks strong enough neighbouring pairs to prevent the lift-off. Finally, figure 8(d)
shows the start-up of blowing at a shallow angle through a slot in the wall
(Case S). The flow in this case, although profoundly disturbed during start-up,
converges over time to an attached laminar wall jet with the shape of a Glauert profile.

3.5. Development of the wave packet in the forced wall jet

It is important to note that for Cases 2 and P (figures 8(b) and 8(c)) the non-periodic
perturbation introduced into the flow is very strong. As a result, the downstream
travelling wave packet that precedes the ejection process already has a large nonlinear
amplitude from the time of its generation. For the forced wall jet in Case 3, on the
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Figure 8. Compilation of ejection scenarios. Shown are iso-surfaces of vorticity with clockwise
(light) and counter-clockwise (dark) rotation plotted versus x, y and t . (a) Harmonic forcing +
pulse (Case 3); (b) start-up of harmonic forcing (Case 2); (c) large-amplitude pulse (Case P);
(d) start-up of blowing through slot (Case S). Forcing parameters are given in table 2.

other hand, a minute pulse disturbance appears to be sufficient to start the process.
How can a pulse of such small amplitude disrupt the forced wall jet in such a dramatic
manner while having virtually no effect on the unforced jet? An excellent starting
point for finding an answer to this question is a close examination of the wall vorticity,
ωwall , the footprint on the wall left by the vortical disturbances inside the flow field.
In figure 9(a), ωwall is plotted versus x and t in a space–time diagram. The dark and
light lines are fluctuations in ωwall tracing the downstream-propagating disturbances
over time. For the first ten fundamental forcing periods after the pulse has been
introduced, the flow field still appears time-harmonic. Then, at time t ≈ tp + 15
and x ≈ 60, a merging of subsequent dark lines (representing counterclockwise wall
vorticity) is observed reflecting the vortex mergings that take place inside the flow.
After a second merging at t ≈ tp +21 and x ≈ 80, a negative spike in the wall vorticity
(counterclockwise rotation) is observed within the area marked by the dashed box.
A close-up of the flow region near the vorticity spike is provided in figure 9(b) with
snapshots of the flow field and the corresponding wall vorticity at three time-instants
during the vortex ejection process. As the vortex dipole lifts up from the wall, the
wall vorticity locally decreases, reaches a minimum at t ≈ tp + 23 and x ≈ 85 and
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Space–time diagrams for the wall vorticity attributed to the wave packet only. Base flow and
time-periodic disturbances are subtracted from the signal, grey-scale contours of vorticity are
plotted on a logarithmic scale. (a) Case 3 (forced), (b) Case 1 (unforced).

then increases again. Incidentally, this negative spike in ωwall was also observed by
Conlon & Lichter (1995) during the dipole lift-off in a transient wall jet.

From the direct comparison of Cases 1 and 3 in figure 10, a true appreciation can
be gained of the tremendous difference between the development of a wave packet
in the forced and in the unforced wall jet. Figure 10 shows space–time diagrams for
the wall vorticity attributed to the wave packet, ωwp,wall (with the wall vorticity of
the base flow, and for Case 3 also the time-harmonic disturbance, subtracted out).
For |ωwp,wall | > 10−4, the plotting scale is logarithmic which allows for illustrating
disturbance growth over many orders of magnitude within one grey-scale plot. Note, in
both cases the flow is perturbed with the identical small-amplitude pulse disturbance
and, as a result, the wall vorticity in figures 10(a) and 10(b) appears identical in the
vicinity of the forcing slot. Farther downstream, however, the wave packet in Case 3
grows by more than three orders of magnitude, while in Case 1 the amplitude of
the wave packet remains small. For time t > 30 + tp , the flow upstream of x ≈ 80
returns to a time-harmonic state, although with a slight phase shift that is noticeable
in figure 10(a). Downstream of x ≈ 80, fluctuations associated with the wave packet
remain strong throughout the remainder of the time period covered in figure 10(a).
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3.6. Nonlinear resonances in the forced wall jet

The fact that ωwall at t = tp and at t = tp + 40 (almost) match upstream of x = 80,
allows for a Fourier transform in time without the need for windowing to counteract
otherwise occurring end effects. The frequency spectrum obtained from the transform
(a sampling period of �t = 40 is used) is plotted in figure 11(a) for locations
upstream of x = 90. The spectrum for Case 3 in figure 11(a) differs greatly from the
corresponding spectrum for Case 1 in figure 4. The Fourier amplitude, Aω,wall , for
Case 3 ranges over four orders of magnitude with discrete peaks at the fundamental
forcing frequency, f = 1, and its higher harmonics, f = 2, 3, 4, which are attributed
to the large-amplitude harmonic disturbance. Note, the amplification observed for
frequencies around f = 1/2 and f = 3/2 is remarkable: The disturbance growth
ranges over three orders of magnitude from the amplitude level over the blowing
and suction slot up to saturation level downstream of x = 50. A direct comparison
between Cases 1 and 3 is made in figure 11(b), plotting the Fourier amplitude of the
wall vorticity versus x for frequencies f = 1/4, 1/2, 1 and 3/2. The corresponding
amplitude curves from Case 3 (solid lines) and Case 1 (dotted lines) match up
for a short distance downstream of the forcing slot, indicating that these Fourier
components initially develop linearly. At the forcing location, the disturbance is
amplified for f = 3/2 and damped for f = 1/2 and f = 1/4 according to linear
theory, as seen from figure 4. However, starting at x ≈ 20, the amplitude curves from
Case 3 for f = 1/2 deviate from their respective linear behaviour and start to grow
rapidly. The strongest growth is experienced by the subharmonic, f = 1/2, which
surpasses the amplitude of component f =3/2 downstream of x = 35. This rapid
subharmonic growth is the hallmark of a nonlinear resonance between the large-
amplitude fundamental and the small-amplitude subharmonic disturbance, as was
observed by Wernz & Fasel (1996a) and by Tumin (1998) for purely time-harmonic
disturbances. The large-amplitude fundamental disturbance acts as a nonlinear
amplifier for the small-amplitude non-periodic wave packet. Note, in figure 11(b)
the nonlinear saturation level of the frequency components within the wave packet
from Case 3 appears to remain far below the amplitude of the harmonic fundamental
disturbance. The reason for this is that the pulse disturbance and the ensuing wave
packet are localized in time (here �tp = 2) and the amplitude of the frequency
spectrum associated with the pulse/wave packet scales with the much larger sampling
interval of the Fourier transform (here chosen as �t = 40). When rescaled by a factor
of 20, the amplitude of the subharmonic Fourier component in Case 3 approaches
that of the fundamental at x ≈ 70, approximately the location where the first vortex
merging is observed in the space–time diagram of figure 9 (at t − tp ≈ 15). A little
farther downstream, the second subharmonic, f = 1/4, also reaches saturation and
surpasses the subharmonic, f = 1/2, in amplitude. This leads to the second vortex
merging observed in figure 9 at x ≈ 85 (t − tp ≈ 23).

3.6.1. Effect of pulse amplitude on the development of the wave packet

Several parameter studies have been performed to determine whether the strong
amplification of the wave packet in the forced wall jet is truly caused by a secondary
instability. For example, according to Floquet theory of (weakly) nonlinear periodic
shear flows, the growth rate of a small-amplitude secondary disturbance that is
amplified owing to the presence of a large-amplitude primary disturbance, does not
depend on the amplitude of the secondary disturbance. This expected linear growth
behaviour has been verified by varying the amplitude, Ap , of the pulse from Case 3
while keeping its shape fixed (pulse type 1 from figure 3(b)). Results from this study
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Figure 12. Dependence of wave packet development on the amplitude of the pulse. (a) Fourier
spectrum for Case 4 (Ap = 10−5); (b) Fourier spectrum for Case 5 (Ap = 10−3); (c) Fourier
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curves for Case L are also shown rescaled (· · ·, without symbols) to reveal deviation from
linear behaviour for Cases 3–5. The arrow shows saturation onset.
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are presented in figure 12. Shown in figure 12(a) is the Fourier spectrum of a wave
packet generated by a pulse with Ap = 10−5 (Case 4, table 2), an order of magnitude
smaller than the amplitude of the pulse in Case 3. A comparison of figure 12(a) with
figure 11(a) reveals that the amplitude growth of the wave packet in Cases 3 and 4 is
virtually identical upstream of x ≈ 50. Farther downstream, the Fourier spectrum for
Case 3 reaches saturation while the spectrum of the smaller-amplitude pulse in Case 4
continues to increase in amplitude. On the other hand, when the pulse amplitude is
increased to Ap = 10−3 (Case 5, table 2), the Fourier spectrum of the pulse reaches
saturation level farther upstream at x ≈ 40, as seen from figure 12(b).

Figure 12(c) provides a quantitative comparison of the disturbance growth in
Cases 3, 4 and 5 for selected frequency components within the wave packet (f = 1/2,
3/2). Serving as a reference is Case L with Ap = 10−6, where the amplitude of
the wave packet remains well below the nonlinear saturation level throughout the
computational domain. In figure 12(c), the amplitude curves from linear Case L
(marked by the dotted lines) have been rescaled such that over the blowing and
suction slot these rescaled curves match the corresponding curves from each of the
other three cases. Departure of the amplitude growth in Cases 3–5 from that in
Case L therefore indicates the onset of nonlinear saturation in these cases. While
Case 4 shows no noticeable difference to Case L and thus exhibits linear secondary
growth throughout the streamwise domain shown, nonlinear saturation sets in at
x ≈ 50 for Case 3 and at x ≈ 40 for Case 5. Not surprisingly, the amplitude of the
pulse disturbance determines the streamwise location where the wave packet reaches
saturation and begins to disrupt the forced wall jet.

3.6.2. Low-frequency versus high-frequency pulse

The numerical experiment of Case 3 demonstrates that in response to forcing with
a broad-spectrum pulse, subharmonic disturbances of f ≈ 1/2 are the most amplified
owing to resonant interaction with the large-amplitude harmonic disturbance. Would
therefore a pulse containing only subharmonic frequencies be more effective at trigger-
ing nonlinear subharmonic resonance with the large-amplitude harmonic disturbance
than a pulse that does not contain the subharmonic part of the spectrum? Or in
other words, are low-frequency perturbations ‘more dangerous’ than high-frequency
perturbations and lead to vortex ejection farther upstream? An answer to these
questions is sought with simulation Cases 6 and 7 where the forced wall jet from Case 2
is additionally forced with pulse type 2 or 3, respectively. As seen from figure 3(b),
pulse type 2 in Case 6 has its amplitude peak at fp = 1/2 with the main frequency band
ranging from f = 0 to 1, whereas pulse type 3 in Case 7 has its peak at fp = 3/2 with
the frequency band ranging from f = 1 to 2. The results from simulation Cases 6 and
7 (figure 13) seem surprising at first. When comparing the respective frequency spectra
in figures 13(a) and 13(b), resonant growth of the subharmonic is significantly weaker
for the low-frequency pulse from Case 6 (figure 13(a)) than for the high-frequency
pulse from Case 7 (figure 13(b)). Whereas in Case 6, the greatest flow response to
the pulse is initially at subharmonic frequencies, the subharmonic disturbances within
the wave packet are (linearly) strongly damped near the forcing location. Resonant
growth only sets in at x ≈ 30 where the subharmonics have already decreased in
amplitude by an order of magnitude. In Case 7, on the other hand, the pulse generates
the greatest flow response at f ≈ 3/2, a part of the spectrum that is linearly amplified.
Disturbances at subharmonic frequencies (f ≈ 1/2), while deliberately excluded from
the spectrum of the forcing pulse (fp = 3/2), are inadvertently generated owing
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Figure 13. Low-frequency versus high-frequency pulse disturbance. The Fourier amplitude of
the walls vorticity. (a) Frequency spectrum for Case 6, pulse with fp = 1/2; (b) spectrum for
Case 7, pulse with fp = 3/2; (c) Fourier amplitude versus x for selected frequencies, f = 1/2
(∇); f = 1 (�); f = 3/2 (	); with curves for Case 6 marked by open symbols, for Case 7 by
solid symbols, and for Case 5 (also shown for reference) by grey symbols.

to nonlinear resonant interaction with the large-amplitude harmonic disturbance
(fh = 1) and quickly surpass disturbances with higher frequencies in amplitude.

The initial ‘boost’ in amplitude that the subharmonic receives in Case 7 owing to
the presence of the larger-amplitude higher harmonic is clearly seen from the direct
comparison of Cases 6 and 7 in figure 13(c), plotting Fourier amplitudes of wall
vorticity for frequencies f = 1/2, 1 and 3/2. Because of the nonlinear interaction
between f = 1 and 3/2, the amplitude of the subharmonic in Case 7 is already one
order of magnitude larger than in Case 6 at the beginning of the secondary resonant
growth region downstream of x ≈ 30. Since the secondary amplification rate during
resonance is nearly identical in both cases, the subharmonic in Case 7 retains its head
start and reaches nonlinear saturation much farther upstream at x ≈ 55, compared
to x ≈ 75 in Case 6. Another indication of the importance of the higher harmonics
(f ≈ 3/2) for the onset of resonant growth is found by comparing the Fourier
amplitudes in Case 7 with those of the broad-spectrum pulse in Case 5, which are
also plotted in figure 13(c) for comparison (marked by grey symbols). Over the
blowing and suction slot, upstream of the onset of secondary disturbance growth, the
Fourier amplitude for f = 3/2 is nearly identical in both cases, whereas the Fourier
amplitude for f = 1/2 in Case 5 exceeds that in Case 7 by an order of magnitude and
is very close to that in Case 6. Yet, despite this initial discrepancy in the amplitude
level of the subharmonic, the secondary resonant growth behaviour in Cases 5 and 7
is similar for both f = 1/2 and f = 3/2. This leads to the conclusion that it is the
amplitude level of the higher harmonic upstream that determines the amplitude of
the subharmonic during secondary resonant growth farther downstream.
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Figure 14. Downstream development of the wave packet in a wall jet that is forced with a
very large amplitude (Case 8). (a) Fourier spectrum of the wall vorticity over x; (b) Fourier
amplitude versus x for selected frequencies, f = 1/4 (�); f = 1/3 (�); f = 1/2 (
); f = 1
(�); f = 3/2 (	). Comparison with Case 3 (Case 8, solid lines/solid symbols; Case 3, dashed
lines/open symbols).

Our numerical experiments demonstrate that the nonlinear resonance mechanism
in the wall jet not only involves interactions between large-amplitude fundamental
(fh = 1) and subharmonics (f ≈ 1/2), but that higher harmonics (f ≈ 3/2) are an
important participant as well. Thus, the scenario leading to a more rapid onset of
subharmonic resonant growth is a triad comprising the large-amplitude fundamental,
fh=1, small-amplitude higher harmonics, f ≈ 3/2, which are linearly amplified, and
smaller-amplitude subharmonics, f ≈ 1/2, which are linearly damped, but are the
recipient of nonlinear energy transfer from the larger-amplitude partners of the triad.

3.6.3. Wave packet development for fundamental disturbance with very large amplitude

Another important characteristic of the subharmonic resonance mechanism is its
strong dependence on the amplitude of the primary disturbance. This dependence is
explored using Case 8, where the forcing amplitude for the time-harmonic fundamental
is increased four-fold when compared to the previous cases in our study, while the
same broad-spectrum pulse is applied as in Case 3 (see table 2). Figure 14(a) shows
the frequency spectrum of the wall vorticity for Case 8. When compared to the
spectrum for Case 3 from figure 11(a), resonant amplitude growth in the upstream
part (x < 35) is far stronger and, as a result, nonlinear saturation of the subharmonic
pulse spectrum (f ≈ 1/2) is also reached significantly farther upstream (at x ≈ 35
for Case 8 versus at x ≈ 55 for Case 3). Figure 14(b) provides a direct comparison
of the Fourier amplitudes from Cases 8 and 3 for selected frequency components
within the disturbance spectra. The figure clearly shows that the presence of a much
larger primary disturbance in Case 8 than in Case 3 results in a large increase in the
amplification rate for frequency components f = 1/2 and 3/2. Disturbance growth
is also increased for the lower frequency f = 1/4. However, in Case 8 it is frequency
component f = 1/3 that reaches saturation first and surpasses component f = 1/2
in amplitude downstream of x ≈ 70. Farther downstream, the subharmonic spectrum
shifts to lower and lower frequencies in discrete jumps, associated with the repeated
merging of vortex pairs inside the flow field. This is seen from the space–time diagram
in figure 15(a) and the snapshots of the flow field in figure 15(b), where a series of
subsequent vortex mergings, a ‘subharmonic cascade’, can be observed downstream
of x = 50. The dipole that eventually lifts off at x ≈ 74 and t − tp = 21 comprises five
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Figure 16. Downstream development of the wave packet in response to phase shifted pulse
(Case 9); (a) space–time diagram of the wall vorticity with the region of ejection marked by
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); f = 1 (�); f =3/2 (	). Comparison with Case 8 (Case 9, solid lines/solid
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merged vortex pairs, then continues to ingest vortex pairs as it slowly moves away
from the wall. While the complex sequence of vortex mergings makes a spectacular
visual display, what is most interesting in Case 8 is the significant gap of ∆x ≈ 20
between the location where the subharmonic f = 1/2 reaches saturation (x ≈ 35,
figure 14(b)) and the location where the vortex mergings start to take place (x ≈ 55,
figure 15(a)). Without this gap (which is not observed in any of the previous cases),
the vortex ejection process in Case 8 would surely occur even farther upstream.

It must be emphasized that the disturbances in Case 8 are highly nonlinear and the
observed mergings occur in rapid succession. Therefore, the resonant interactions are
complicated by a strong sensitivity to the phase of the disturbances, particularly for
the secondary vortex pairings. Specifically, in addition to the amplitude and spectral
composition of the pulse, the phase angle, θh,p , (equation (2.6)) of the fundamental
disturbance at the time of pulse deployment, tp , also affects the merging sequence and
the lift-off. This is demonstrated with Case 9 where the pulse is applied at θh,p = π
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(see table 2). As seen from the space–time diagram for Case 9 in figure 16(a), the
first vortex merging is now observed at x ≈ 40, ∆x = 15 farther upstream than for
Case 8 and the secondary mergings occur in a sequence that is significantly different
from Case 8 in figure 15(a), resulting in an upstream shift of the ejection location
to x ≈ 59. The amplitude plot in figure 16(b) comparing Case 9 with Case 8 for
selected frequencies reveals a slight upstream shift in the onset of resonant growth
for frequency components f = 1/2 and 3/2. Remarkably, this results in twice the
saturation level for these frequencies in Case 9 (leading to the observed upstream
shift in the vortex mergings) and, as a consequence, also results in stronger growth
for the lower-frequency components, f = 1/4 and 1/3.

The initial phase angle of the wave packet relative to the harmonic primary
disturbance, and thus the onset of resonant growth, is closely connected to the
receptivity process and depends on the particular forcing method for generating
the pulse (i.e. slot location, slot width, blowing profile, etc.) as well as the primary
disturbance itself. For resonant interaction between the primary disturbance and the
prototypical pulse chosen here, the phase angle θh,p = 0 proves to be favourable in
Cases 3–7 and unfavourable in Case 8 leading to a delay in the onset of resonant
growth. We can therefore expect that the relative phase of a small perturbation that
may occur naturally in a laminar wall jet (in addition to the amplitude and frequency
content of the perturbation) significantly impacts the resonant growth behaviour of
the generated wave packet and ultimately also the ejection location.

3.6.4. Vortex ejections in response to different pulse disturbances

With Cases 3–9, various parameters influencing the nonlinear resonant interaction
between a large-amplitude primary disturbance and a small-amplitude pulse
disturbance have been explored, such as the amplitude and frequency content of
the pulse disturbance, the amplitude of the primary disturbance and the relative
phase angle between the pulse and the primary disturbance. In all these cases, owing
to resonant interaction with the time-harmonic primary disturbance, the subharmonic
frequency components within the generated wave packet undergo rapid amplification
until, eventually, nonlinear saturation is reached, vortex mergings occur and one or
multiple vortex pairs lift off from the wall. Figure 17 provides a compilation of the
flow fields from Cases 4–9 at time t−tp = 40 after the pulse has been introduced
(Case 3 is shown in figure 7(d)). In each case, an arrow marks the streamwise location
of the negative vorticity spike indicating the lift-off of the vortex pair. The flow fields
from Cases 4 and 5 with a small and a large pulse amplitude (figures 17(a) and 17(b))
demonstrate that an increase in the pulse amplitude leads to an upstream shift in the
ejection location. In Case 3, vortex lift-off occurs at x ≈ 85 (figure 9), in between
those of Cases 4 and 5. Recall from figure 12 that although the growth rate during
resonance is (nearly) identical in all three cases, the larger the initial amplitude of the
pulse, the farther upstream the wave packet reaches nonlinear saturation. Similarly,
as seen by comparing the flow fields from Cases 6 and 7 (figures 17(c) and 17(d)),
nonlinear saturation and ejection occurs farther upstream for the pulse in Case 7,
with a spectrum containing frequencies to which the flow is more receptive (f �1).
We have seen from figure 13(c) that the resonant growth behaviour in Cases 5 and 7
is very similar. As a result, the flow fields in figures 17(b) and 17(d) for these cases
also bear a great resemblance to each other. Lastly, the flow fields from Cases 8 and 9
(figures 17(e) and 17(f)) show that the ejection location shifts farther upstream for
a larger primary disturbance amplitude and, even more so, for a favourable phase
angle of the pulse relative to the primary disturbance.
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Figure 17. Flow response to different pulse disturbances. Grey scales of instantaneous vorticity
at t = 40 for Cases 4–9; (a) small-amplitude, broad-spectrum pulse, Case 4; (b) large-amplitude,
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spectrum pulse with larger-amplitude fundamental, Case 9. Animations of Cases 4–9 are
provided in movies 2–4 available with the online version of the paper.

The dependence of the ejection process on the forcing parameters is summarized in
the semi-logarithmic diagram of figure 18. Plotted for pulse types 1–3 is the streamwise
location of the negative vorticity spike as a function of the pulse amplitudes. Ejection
locations corresponding to simulation Cases 3–9 are labelled with the respective
case number. The trends that have been established for these cases are consistently
observed over a wide range of pulse amplitudes: (i) the ejection location shifts
upstream with increased pulse amplitude; (ii) a high-frequency pulse leads to ejection
farther upstream than a low-frequency pulse; and (iii) a larger-amplitude primary
disturbance also moves the ejection location farther upstream; (iv) an unfavourable
relative phase angle between the harmonic and the pulse disturbance delays the
ejection process for all pulse amplitudes. In fact, the phase-angle variation leading
to a downstream shift of the ejection location in Case 8 compared to Case 9 has
been extended to a total of ten cases with θh,p = 0 to 9/5π over one fundamental
oscillation cycle. While the ejection locations for phase angles θh,p = 2/5π to 6/5π
virtually coincide at x ≈ 59, for other angles within the cycle the ejection location
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two mergings.

shifts downstream, farthest for θh,p = 9/5π to x = 102. Also plotted in figure 18,
for reference, are the ejection locations of vortex pairs developing from a broadband
pulse in the absence of a harmonic primary disturbance. Clearly, without the presence
of a large-amplitude primary disturbance, the pulse amplitude must be much greater
for the ejection to occur. For example, to trigger a vortex ejection at the same location
as in Case 3, a pulse amplitude 60 times larger is required.

The entries in figure 18 have been marked according to the number of vortex
mergings that precede the ejection process in each case. Ejections that occur
farthest upstream are preceded by a single merging (filled symbols) whereas ejections
farther downstream are preceded by multiple mergings (shaded symbols). Notice that
within each grouping, the ejection location gradually shifts downstream as the pulse
amplitude, Ap , decreases. Larger jumps between ejection locations generally coincide
with an increase in the number of vortex mergings before ejection.

Whereas it is conceivable that in two-dimensional simulation of a laminar wall jet,
vortex ejection occurs at some location far downstream even for exceedingly small
perturbations, the wall jet in three-dimensional simulations eventually transitions
to turbulence because of the presence of three-dimensional perturbations in the
flow. Therefore, the underlying two-dimensional resonance mechanism promoting the
ejection of vortex pairs is in competition with three-dimensional mechanisms which
may counteract this ejection process.

4. Three-dimensional simulation results
Even at the moderately low Reynolds number of the laminar Glauert wall jet

considered in the present study, the flow transitions to turbulence within a certain
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streamwise distance depending on the perturbations that are introduced into the flow.
In experiments, transition may be triggered, for example, by free-stream turbulence
and/or surface roughness. In numerical simulations, three-dimensional perturbations
may be introduced deliberately through forcing, or may develop from numerical
round-off. Nonlinear resonant interactions of these three-dimensional perturbations
with ‘two-dimensional’ (spanwise) primary disturbances then lead to breakdown to
turbulence. The current understanding of the three-dimensional stages of wall jet
transition is fragmentary with only a few experimental and numerical investigations
of the three-dimensional transition mechanisms reported in the literature (Bajura
& Catalano 1975; Gogineni & Shih 1997; Wernz & Fasel 1997; Visbal, Gaitonde
& Gogineni 1998; Levin et al. 2005). A detailed systematic study of these three-
dimensional mechanisms with a combined numerical/experimental approach would
surely be worth while. The present objective, however, is only to demonstrate the
impact of three-dimensional random perturbations on the vortex ejection process
that is such a prominent feature in two-dimensional simulations. Can a wave
packet generated by a two-dimensional pulse disturbance overcome three-dimensional
disturbances with a comparable amplitude level and thus lead to the ejection of dipolar
vortices during wall jet transition?

Since the computational cost of three-dimensional direct numerical simulations
exceeds the cost of two-dimensional simulations by orders of magnitude, we have
limited our focus on simulation Case 2 (table 2) which was recomputed with the
three-dimensional version of our Navier–Stokes code (Meitz & Fasel 2000). The
computational domain employed in the two-dimensional simulations (figure 1) has
been shortened to 1601 grid points in the streamwise direction with the outflow
boundary now placed at xout = 205 while all other computational parameters are
kept unchanged. In the spanwise direction, a large domain size of Lz = 40 has
been afforded and resolved using 256 collocation points. The computational grid,
therefore, totals more than 73 million collocation points, well beyond the capabilities
of the local computational resources employed for our two-dimensional simulations.
Hence, the three-dimensional simulations have been performed on the Cray X1
supercomputer at the Army High Performance Resource Center (AHPCRC) using
32 multi-streaming processors with MPI parallelization.

4.1. Transition of a forced wall jet in the presence of three-dimensional white noise

In addition to harmonic two-dimensional forcing, which is identical to that from
Case 2, small-amplitude white-noise disturbances are introduced in all spanwise
Fourier components through the same blowing and suction slot. For generating the
white-noise disturbances, a random number generator, RAN1, by Press et al. (1989)
is employed. The amplitude level of the white noise is deliberately kept uniformly
constant at Ar = 5×10−5 so that no localized wave packets are likely to be generated
by the forcing. During start-up of the three-dimensional simulation, the buffer
domain is initially placed near the blowing and suction slot, then moved downstream
in several steps; this same strategy for damping out the start-up vortex was also used
in our two-dimensional simulations. After a transient of five flow-through times, the
flow field reaches a statistically stationary state (figure 19). In the upstream part
of the computational domain, up to x ≈ 70, the flow closely resembles that of the
two-dimensional simulation Case 2. Farther downstream, the primary disturbances
disintegrate, the flow starts to spread rapidly in the wall-normal direction and appears
to be dominated by random fluctuations. The rapid increase in the wall-jet spreading
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downstream of x = 70 is seen from the development of the half-width (thick dashed
line in figure 19) which increasingly deviates from its original development for the
unperturbed laminar flow (thin dashed line). As the flow transitions, the streamwise
mean velocity, also plotted in figure 19 for three streamwise locations, changes shape
from a laminar Glauert profile at x = 50 to approach a turbulent profile at x = 150.

4.2. Vortex ejection during wall-jet transition

The flow response to two different pulse disturbances is now investigated: (i) the
broad-spectrum pulse from Case 3 (type 1, figure 3) and (ii) the high-frequency pulse
from Case 7 (type 3, figure 3). In both cases, the pulse amplitude (Ap = 10−4) rises
above the amplitude level of the random disturbances (Ar = 5 × 10−5) and the pulse
therefore represent a localized event within a uniformly random background noise.
Not surprisingly, a pulse of smaller amplitude is ‘drowned out’ by the background
noise and does not generate a noticeable flow response. On the other hand, the pulse
amplitude is only moderately larger than the background and the occurrence of such
localized perturbations in the natural flow can be easily conceived. Figures 20(a)
and 20(b) show the flow fields from the three-dimensional simulation Cases 3 and 7 at
time t = tp + 40 after the pulse has been introduced in each case. The corresponding
two-dimensional simulations are shown in figures 7(d) and 17(d). Clearly, for both
cases a strongly amplified wave packet has developed in response to the pulse.
However, the wave packet in Case 3 does not disrupt the three-dimensional transitional
flow enough to cause a vortex ejection, which occurs at x = 85 in the two-dimensional
simulation. Evidently, the three-dimensional fluctuations associated with the onset of
transition have a weakening effect on the spanwise vortex pairs. For Case 7, on
the other hand, where the vortex ejection occurs at x = 59 in the two-dimensional
simulation, a massive counter-clockwise rotating vortex is situated above the flow and
the jet underneath is lifted away from the wall. The clockwise rotating vortex that is
part of the ejected dipole observed in two-dimensional simulations has been shredded
by the strong three-dimensional disturbances that emerge during transition.

Further details of the ejection process in the three-dimensional simulation of Case 7
are revealed in figure 21 which shows snapshots at four time instants of the three-
dimensional vortical structures inside the flow field represented by the Q-criterion
according to Hunt, Wray & Moin (1988). Q is defined as

Q = 1
2
(WijWij − SijSij ) (4.1)

and thus identifies flow regions where rotation, Wij , exceeds strain, Sij . The snapshots
of the vortical structures at time t = tp (figure 21(a) and t = tp + 40) figure 21(d)
directly correspond to the grey-scale plots of spanwise vorticity in figures 19 and 20(b),
respectively. Although Q cannot distinguish between clockwise and counterclockwise
rotating vortices, it nicely illustrates the development from the two-dimensional
disturbances in the upstream part of the flow, to the emergence of spanwise
modulations, to the highly complex three-dimensional intertwined vortical structures
during turbulent breakdown in the downstream part of the computational domain.
The snapshot at t = tp + 20 in figure 21(b) captures the vortex dipole as it starts
to lift away from the wall just upstream of the region of three-dimensional turbulent
breakdown. Although noticeably distorted by spanwise modulations, the vortex pair
is still highly coherent. At t = tp +25, as illustrated by figure 21(c), strong streamwise
vortical structures have developed that wrap around the vortex pair. The snapshot



Nonlinear resonances in a laminar wall jet 303

xz

y

40

500 100 150

0.2–0.2 0
ccw cw

x

Figure 19. Direct numerical simulation of transition in a Glauert wall jet triggered by
blowing and suction with a two-dimensional large-amplitude harmonic perturbation and with
three-dimensional small-amplitude white noise (Case 2). The spanwise average of spanwise
vorticity and superposed streamwise mean velocity profiles is shown at three streamwise
locations. Also shown is the half-width of the transitional wall jet and the half-width of the
initially undisturbed two-dimensional Glauert wall jet (base flow).
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Figure 20. Transitional wall jet subjected to two different pulse disturbances. Snapshots of
the flow field (spanwise average of spanwise vorticity) are shown at time t = tp + 40;
(a) broad-spectrum pulse (type 1, Case 3); (b) high-frequency pulse (type 3, Case 7).

at t = tp + 40 in figure 21(d) depicts the counterclockwise rotating spanwise vortex
(compare with figure 20(b)) encased in a tangle of three-dimensional vortical structures
that have disintegrated its clockwise-rotating counterpart within the vortex pair.
Clearly, the rapidly growing wave packet in Case 7 succeeds in ‘pealing’ the jet off
the wall before the vortex pairs within the primary disturbance lose their spanwise
coherence owing to the emergence of three-dimensional vortical structures during
turbulent breakdown.
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Figure 21. Ejection of dipolar vortex in the transitional wall jet in response to high-frequency
pulse (type 3, Case 7). Vortical structures represented by iso-surfaces of Q = 0.002 at four
time instants; (a) t = tp , (b) t = tp + 20, (c) t = tp + 25, (d) t = tp + 40, Movie 5, available
with the online version of the paper shows an animation of this.
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Figure 22. Development of a wave packet in response to a high-frequency pulse
(type 3, Case 7). Space–time diagram of the spanwise-averaged spanwise wall vorticity;
(a) three-dimensional simulation; (b) two-dimensional simulation.

4.3. Development of wave packet during wall-jet transition

The development of the wave packet leading to the vortex ejection in the three-
dimensional simulation of Case 7 is documented by the space–time diagram in
figure 22(a) of the spanwise averaged spanwise wall-vorticity, ωz,wall . Also shown
for comparison in figure 22(b) is the corresponding two-dimensional simulation of
Case 7. Downstream of x = 70, as the flow breaks down to turbulence in the three-
dimensional simulation, the imprint of the spanwise vortices in the wall vorticity is
severely diminished even before the wave packet reaches nonlinear saturation. Farther
upstream, however, where the flow is dominated by ‘two-dimensional’ spanwise
coherent disturbances, the development of the wave packet including the vortex
mergings before and during lift-off is virtually identical in both figures 22(a) and 22(b).
In either case, the negative spike in the wall-vorticity occurs at x ≈ 58 and t ≈ tp +16
(the region marked by the dashed box) indicating the lift-off of the vortex dipole
from the wall. Although the pulse amplitude in Case 7 exceeds the amplitude level
of the random white-noise perturbations only by a factor of two, the wave packet
development in response to the pulse is hardly influenced by three-dimensional
disturbances in the flow field until ejection has taken place.

How similar the wave-packet development is in both the two- and three-dimensional
simulation of Case 7 can also be seen when comparing the two-dimensional
disturbance spectrum from the three-dimensional simulation in figure 23(a) with
the spectrum from the corresponding two-dimensional simulation in figure 13(b).
Both cases show the same strong flow response in the frequencies centred around
f = 3/2 and the same shift towards subharmonic frequencies farther downstream
owing to nonlinear resonant interaction. Additionally, over the blowing and suction
slot, the Fourier spectrum for the three-dimensional simulation in figure 23(a) reveals
a uniform flow response across the entire frequency range shown in response to the
additional white-noise forcing in this case. However, the flow is not nearly as receptive
to the random forcing. This is seen from figure 23(b) which plots the frequency
spectrum for Case 2 where, in addition to the primary harmonic disturbance, the
flow is forced with random white noise, but no pulse. Qualitatively, the frequency
spectrum in figure 23(b) resembles the spectrum in figure 23(a), also showing the
strongest flow response at f ≈ 3/2 and f ≈ 1/2, albeit at a far smaller amplitude.
As seen from figure 23(c) which plots the Fourier amplitudes of selected frequency
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Figure 23. Fourier spectrum of two-dimensional disturbances during wall-jet transition (three-
dimensional simulations). Shown are Fourier amplitudes of the spanwise-averaged spanwise
wall vorticity versus streamwise location; (a) frequency spectrum for Case 7 (high-frequency
pulse); (b) frequency spectrum for Case 2 (no pulse); (c) direct comparison of Fourier
amplitudes from Case 2 (open symbols) and Case 7 (symbols with solid lines) for selected
frequencies, f = 1/2 (
); f = 1 (�); f = 3/2 (	). Also shown for comparison are the
corresponding curves from the two-dimensional simulation of Case 7 (symbols with dashed
lines).

components, the disturbance growth in Cases 2 and 7 is indeed very similar for both
f = 1/2 and f = 3/2. However, for Case 7, the Fourier amplitude in f = 3/2 not
only is several times larger over the blowing and suction slot (especially considering
that the pulse duration, ∆tp = 8, is much shorter than the sampling period for
the Fourier transform, ∆tp = 40, while the random forcing is applied throughout
the interval), but more importantly, it does not decay downstream of the slot. The
combined effect in Case 7 of increased forcing amplitude in f = 3/2 and a much
higher receptivity of the flow to the pulse disturbance provides the two-dimensional
wave packet with a significant ‘head start’ over other, random disturbances and thus
the vortex ejection ahead of the three-dimensional breakdown is not so surprising
after all.

5. Conclusion
Time-dependent two-dimensional perturbations can be highly disruptive to laminar

wall jets by triggering the development of energetic counter-rotating vortex pairs from
hydrodynamic instabilities. If strong enough, these dipolar vortices can lift away from
the wall and, in some cases, lead to the detachment of the entire jet from the wall. In the
present paper, by means of two-dimensional numerical simulations of prototypical test
cases, we have systematically studied the physical mechanisms responsible for this fas-
cinating ejection phenomenon. The simulations suggest that the following two ingredi-
ents are required for ejection to occur: (i) a disturbance that is non-periodic in time,
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and (ii) a large-amplitude disturbance. From a small-amplitude pulse disturbance,
a downstream propagating wave packet develops which grows and decays linearly
without lasting disruption of the wall jet. Time-harmonic forcing with a large disturb-
ance amplitude leads to the development of a double row of energetic counter-rotating
vortices in the inner and outer regions of the jet which reach a stable time-periodic
state following a transient phase after the start-up of the forcing. When the two
disturbance types are introduced simultaneously, however, nonlinear interaction leads
to rapid resonant growth of the subharmonic part within the frequency spectrum of the
wave packet and, as a result, the double vortex row is disrupted by vortex merging and
vortex lift-off. This model scenario is a prototype for the early two-dimensional stages
of transition in a laminar wall jet, in particular when the flow is forced periodically
in time and when, because of the presence of large-amplitude harmonic disturbances,
wave packets developing from low-level two-dimensional background perturbations
experience rapid resonant growth. Of course, distinct energetic vortex pairs can also
be produced directly by massive disturbances that are simultaneously non-periodic in
time and large in amplitude, such as large-amplitude pulse disturbances, disturbances
generated during an abrupt start-up of blowing or of forcing with a large amplitude.

Whereas in two-dimensional numerical simulations the forced laminar wall jet is
dominated by the subharmonic resonance mechanism and vortex ejections are difficult
to prevent, in three-dimensional simulations, or in nature, the wall jet eventually
breaks down to turbulence and the two-dimensional subharmonic resonances are
in competition with three-dimensional resonances during the transition process. As
shown with a three-dimensional direct numerical simulation, where the laminar
wall jet is forced by small-amplitude white noise in addition to the large-amplitude
time-harmonic forcing, three-dimensional perturbations lead to the breakup of
the double-vortex row into three-dimensional turbulent motion within a certain
streamwise distance. In this transitional flow, a two-dimensional pulse disturbance
can still trigger a vortex ejection if the generated two-dimensional wave packet
reaches a large amplitude upstream of the turbulent breakdown region. However,
the simulations also indicate that for this to occur, the pulse amplitude must
be at least moderately larger than the amplitude level of the three-dimensional
perturbations. It is easily conceivable that in a laminar wall jet with a low turbulence
level, such two-dimensional time-local perturbations indeed occur at times, and
the vortex ejections in the experiments by Bajura & Catalano (1975) provide
an indication of this. The mixture of two- and three-dimensional perturbations
introduced upstream into the laminar wall jet and the receptivity of the flow to these
perturbations therefore strongly affect whether vortex ejection will occur or not as a
possible outcome of the competition between two- and three-dimensional resonance
mechanisms during wall-jet transition.
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